MMAR 2018 Lecture Schedule - Compact Form

Monday, 15:10 - 16:10

Casino
A1L-A , page 16
An Intelligent Decision-Making System for Autonomous
Units Based on the Mind Model
Kowalczuk, Czubenko

Monday, 16:30 - 17:50

Casino	Kalman	Lehar	Strauss
A3L-A , page 20	A3L-B , page 21	A3L-C , page 23	A3L-D , page 25
Model Decomposition and	Continuous-Time Nonlinear	Variable-, Fractional-Order	Mixed Energy Model for a
Optimal Flux Control for	Block-Oriented Dynamic	RST/PID Controller Transient	Differential Guide Mobile
Linear Distributed Heat	System Identification from	Characteristics Calculation	Robot
Transfer Systems	Sampled Step and Step-Like	Ostalczyk	Jaramillo Morales, Gómez
Kostin, Rauh, Aschemann	Responses		Mendoza
	Figwer		
Optimal PWA Approximation	Trajectory Tracking and	Logistic Fractional	Feasible Trajectory Planning
for a Nonlinear Car on the Hill	Nonparametric Identification of	Variable-Order Equation -	Algorithm for a Skid-Steered
System and Properties of the	Flexible Space Robot	Numerical Simulations for	Tracked Mobile Robot Subject
Hybrid MPC Constrained	Manipulators	Fitting Parameters	to Skid and Slip Phenomena
Time-Optimal Controller	Sąsiadek, Ulrich, Krzyżak	Mozyrska, Oziablo	Nardi, Ferraro,
Orlowski			Scordamaglia
An Integro-Differential	Efficient Identification of	The Fractional Variable-Order	Application of Iterative
Approach to LQ-Optimal	Hammerstein Systems by	Cucker-Smale Type Model for	Learning Methods to Control
Control Problems for Heat	Two-Level Optimization with	a Couple of Agents	of a LEGO Wheeled Mobile
Transfer in a Cylindrical Body	Decomposition	Girejko, Mozyrska,	Robot
Gavrikov, Kostin	Mzyk	Wyrwas	Maniarski, Paszke, Patan
		Predictive Control of Linear	Leader-Follower Control and
		Fractional-Order Systems	Collision Avoidance for the
		Based on Discrete-Time	Formation of
		Fractional-Order Laguerre	Differentially-Driven Mobile
		Filters	Robots
		Stanisławski, Latawiec,	Kowalczyk, Kozłowski
		Rydel, Łukaniszyn, Gałek	

Tuesday, 9:00 - 10:00

Casino
B1L-A , page 28
Model Predictive Control and Estimation of Linear
Transport-Reaction Distributed Parameter Systems
Dubljevic

Tuesday, 10:00 - 11:00

Casino	Kalman	Lehar	Strauss
B2L-A , page 28	B2L-B , page 30	B2L-C , page 31	B2L-D , page 33
Linear Matrix Inequality	Improving Reliability Through	ReliefF-Based Feature Ranking	Iterative Learning Control for a
Techniques for the	the Product's Life Cycle	and Feature Selection for	Sub-Class of Uncertain 2D
Optimization of Interval	Management	Monitoring Induction Motors	Systems
Observers for Spatially	Makarova, Shubenkova,	Stief, Ottewill, Baranowski	Sulikowski
Distributed Heating Systems	Pashkevich		
Rauh, Kersten, Aschemann			
Remarks on Functional	Optimisation-Based Tuning of	Application of the Wavelet	On Leader-Following
Observers for Distributed	Dynamic Matrix Control	Transform and Lipschitz	Consensus Protocol for Positive
Parameter Systems	Algorithm for Multiple-Input	Exponent for the Evaluation of	Discrete-Time Multi-Agent
Emirsajłow	Multiple-Output Processes	Sandwich Panel Deformations	Systems
	Sawulski, Ławryńczuk	at the Support	Girejko, Malinowska
		Pozorska, Pozorski	
Actuator Fault Detection and	A New Potential Field Inspired	Analytical Steady-State Model	Pole-Free Perfect Control:
Estimation for a Class of	Path Planning Algorithm for	of the Pipeline Flow Process	Theory Vs. Simulation
Hyperbolic PDEs Using	Ships	Kowalczuk, Tatara	Examples
Filter-Based Observer	Lazarowska		Krok, Hunek
Xu, Dubljevic			

Tuesday, 11:20 - 13:00

Casino	Kalman	Lehar	Strauss
B4L-A , page 38	B4L-B , page 40	B4L-C , page 42	B4L-D , page 45
Fractional Opinion Formation	A Decoupling Servo Pressure	Physical Modelling of an	Second-Order Sliding Mode
Models with Leadership	Controller for Pneumatic	Antagonistic Pneumatic Pivot	Control with State and
Almeida, Malinowska,	Muscle Actuators	Drive	Disturbance Estimation for a
Odzijewicz	Martens, Seel, Boblan	Winter, Rücker,	Permanent Magnet Linear
		Landkammer, Hornfeck,	Motor
		Heß, Paetzold	Aschemann, Haus,
			Mercorelli
Leader-Following Group	Practical Validation of the	Comparison and Identifiability	Sliding Mode Control with
Consensus of Discrete	Reduced-Order Active	Analysis of Friction Models for	Time-Varying Switching
Fractional-Order	Disturbance Rejection	the Dither Motion of a Solenoid	Hyperplane for Data
Double-Integrator Multi-Agent	Controller for the	Wenzl, Straußberger,	Transmission Networks
Systems	Delay-Dominated Processes	Braun, Wirtensohn, Kiltz,	Latosiński, Bartoszewicz
Tabatabaei, Shahamatkhah	Nowak, Grelewicz, Czeczot	Reuter, Aschemann	
Simple Case of Fractional	A Quasi-Stationary Approach	Experimental Modelling of a	Integral Sliding Mode Control
Sturm-Liouville Problem with	to Control Problems for Hybrid	Floating Offshore Wind	and Gain-Scheduled Modified
Homogeneous Von Neumann	Flexible Systems	Turbine	Utkin Observer for an
Boundary Conditions	Gavrikov, Akulenko	${f Lindquist, Nielsen,}$	Underground Coal Gasification
Klimek		Pedersen, Soltani	Energy Conversion Process
			Uppal, Butt, Bhatti,
			Aschemann
Extensions of the	Visual Feedback for Control	ADRC Load Position	Discrete Sliding-Mode Control
Cayley-Hamilton Theorem to	Using Haar-Like Classifier to	Controller for Two Mass	of Multipath TCP Networks
Fractional Linear Systems	Identify the Quadcopter	System with Elastic Joint and	Under Input and Output
Kaczorek	Position	Backlash	Uncertainty
	Urbanski	Wicher	Ignaciuk, Morawski
On the Observability of Linear	High Performance Control of a	Structural Sensitivity of	Sliding Mode Control of an
Nonstationary Fractional	Coupled Tanks System As an	Control Models Arising in	Electromechanical Solenoid
Systems	Example for Control Teaching	Combined	Actuator for Soft Landing
Zaczkiewicz	Blachuta, Bieda, Grygiel	Chemo-Radiotherapy	Kuntuz, Qureshi, Bebek
		Dolbniak, Smieja,	
		Swierniak	

Tuesday, 15:00 - 16:20

Casino	Kalman	Lehar	Strauss
B5L-A , page 47	B5L-B , page 49	B5L-C , page 51	B5L-D , page 53
Optimality and Sensitivity of	Performance Analysis of the	Nonparametric Identification of	Guidance and Control of
Least-Distance and Avoidance	Image Fusion Methods of the	the Surgeon's Hand Vibration	Autonomous, Flexible Wing
Solutions in Multicriteria	Proposed 2D Acoustic Camera	in Haptic Devices	UAV with Advanced Vision
Optimization	Rzepecki, Budzan, Wrona,	Hajnayeb, Ghasemloonia	System
Skulimowski	Pawelczyk		Al-Isawi, Sasiadek
Optimization of Robot Tasks	On Impulsive Noise	Modeling and Identification of	MARAAL: a Low Altitude
by Intelligent Objects Using	Suppression Techniques in	Cylindrical Bodies with Free	Long Endurance Solar Powered
RFID Technology	Color Images	Convection and Peltier	UAV for Surveillance and
Thormann, Winkler	Maliński, Smołka	Elements As Sources for Active	Mapping Applications
		Heating	Dwivedi, Patrikar,
		Knyazkov, Aschemann,	Addamane, Ghosh
		Kersten, Kostin, Rauh	
Approximate Criteria for the	Research of the Equipment	Least Squares and Instrumental	Obstacle Detection and
Evaluation of Truly	Calibration Methods for	Variables Identification of	Avoidance System for
Multi-Dimensional	Fertilizers Particles	Polynomial Wiener Systems	Unmanned Multirotors
Optimization Problems	Distribution by Size Using	Janczak	Stulgis, Ambroziak,
Kowalczuk, Białaszewski	Image Processing Measurement		Kondratiuk
	Method		
	Laucka, Adaskeviciute,		
	Valinevicius, Andriukaitis		
1st Order Nonstationary	Classification of Vehicles in	Parameter Identification for	Development of an Unmanned
Element Optimization Using	Aerial Imagery Using Deep	Non Integer Order, Discrete,	Vertical Take-Off and Landing
PSO Algorithm	Convolutional Neural Networks	State Space Model of Heat	Aircraft for Medical Express
Wiechetek, Kaszyński	Mazurek,	Transfer Process Using CFE	UAV Challenge
	Oszutowska-Mazurek	Approximation	Czyba, Lemanowicz,
		Oprzędkiewicz, Mitkowski	Simon, Kudala, Gorol,
			Galeja, Hanke, Sikora,
			. Grabowski, Ryczko,
			Żurawski, Kapała, Kreihs,
			Langner

Wednesday, 9:00 - 10:00

Casino C1L-A, page 62 Autonomous Flight of Flapping Wing Robots - the Relation Between Body and Mind de Croon

Wednesday, 10:00 - 11:00

Casino	Kalman	Lehar	Strauss
C2L-A , page 62	C2L-B , page 64	C2L-C , page 65	C2L-D , page 66
Robust and Adaptive Ship	Control Loop Performance	Performance Assessment of the	Feedforward Position Control
Path-Following Control System	Improvement for OPC	Tilt Fractional Order Integral	Concepts for Radial Pneumatic
Design	Implementation	Derivative Regulator for	Engines
Zwierzewicz	Grega	Control Flow Rate in Festo	Wache, Aschemann
		MPS® PA Compact	
		Workstation	
		Koszewnik, Ostaszewski,	
		Pawłuszewicz, Radgowski	
Model-Free Control Approach	Amplitude Modulation and	Transfer Matrices with Positive	Computationally Efficient
for Fixed-Wing UAVs with	Convolutional Encoder	Coefficients for Standard and	Implementation of Dynamic
Uncertain Parameters Analysis	Techinques for Gait Speed	Fractional Positive Linear	Matrix Control Algorithm for
Barth, Condomines,	Classification	Systems	Very Fast Processes Using
Moschetta, Join, Fliess	Elkurdi, Caliskanelli,	Kaczorek, Sajewski	Programmable Logic Controller
	Nefti-Meziani		Wojtulewicz, Ławryńczuk
On Initialization of Adaptation	Multitasking Filtration	Discrepancy Between	A Comparative Study on the
in Active Noise Control	Network	Derivative Orders in Fractional	Nonlinear Control of Ball and
Figwer, Michalczyk	Sztandera, Kaszyński	Supercapacitor Models for	Plate
		Charging and Discharging	Şen, Türker
		Cycles	
		Kopka	

Wednesday, 11:20 - 13:00

Casino	Kalman	Lehar	Strauss
C4L-A , page 72	C4L-B , page 74	C4L-C , page 76	C4L-D , page 78
Further Towards the Analytical	A Lyapunov Function Based	Effective Use of Lightweight	Comprehensive Modeling of
Solution of Minimum-Energy	Nonlinear Controller Design for	Robots in Human-Robot	Quadrotors for Maneuvering
Perfect Control Design	PVTOL Aircraft	Workstations with Monitoring	Flight Control Design
Problem	Subaşı, Türker	via RGBD -Camera	Peng, Abdul Hamid, Zhu,
Hunek, Feliks		Bothe, Winkler, Goldhahn	Lin, Chen
On Polynomial Zero Exclusion	Combining an Internal SMC	Remote Control of Robotic	A Generalized Crank-Nicolson
from an RHP Sector	with an External MTPA	Manipulator Under Delays in	Method for the Solution of the
Casagrande, Krajewski,	Control Loop for an Interior	Communication Channel	Subdiffusion Equation
Viaro	PMSM	Klimkowicz, Patan	Błasik
	Zwerger, Mercorelli		
A New Nonunique	Study on Controller	Efficient Evaluation and	Numerical Aspects of Extreme
PSVD-Based Inverse of	Embedding Stage Using	Optimization of Automated	Learning Machine
Nonsquare Polynomial	Model-Based-Design for a Bike	Gripper Finger Design for	Implementation to Regression
Matrices	with CMG	Industrial Robotic Applications	Problems
Hunek, Majewski	\mathbf{R} óżewicz,	Kapilavai, Wolniakowski,	Kabziński
	Górniczo-Hutnicza, Piłat	Jørgensen, Lindvig,	
		Savarimuthu, Krüger	
Application of a	Effects of Pharmacokinetics	Preliminary Studies on	Estimation of a Stochastic
Frequency-Discretization	and DNA Repair on the	Trajectories Generation for	Burgers' Equation Using an
Technique for Stability and	Structure of Optimal Controls	Walking Robot Based on	Ensemble Kalman Filter
Control of Uncertain	in a Simple Model of	Human Data	Domżalski, Kowalczuk
Differential Linear Repetitive	Radio-Chemotherapy	Parulski, Kozłowski	
Processes	Bajger, Fujarewicz,		
Boski, Paszke, Rogers	Swierniak		
A Characterization of the	Comparison of		Efficiency Improvements to
Distance Between Controllable	Estimator-Based		Uniformization for Markovian
and Uncontrollable LTI	Compensation Schemes for		Birth-and-Death Models
Systems	Hydrostatic Transmissions with		Burak
Son, Páez Chávez,	Uncertainties		
Siegmund	Danh, Aschemann		

Thursday, 9:00 - 10:20

Casino	Kalman	Lehar	Strauss
D1L-A , page 82	D1L-B , page 84	D1L-C , page 86	D1L-D , page 88
Mechatronic 3D Sound	Robust NMPC Schemes for the	Extremal Problems for	Multiple-Model Based
Intensity Probe and its	Control of Mobile Robots in	Parabolic Systems with	Fault-Diagnosis: an Approach
Application to DOA	the Presence of Dynamic	Multiple Time-Varying Lags	to Heterogeneous State Spaces
Mickiewicz, Raczyński	Obstacles	Kowalewski	Skeli, Weidemann
	Subramanian, Nazari,		
	Arslan Alvi, Engell		
New Approach to Accuracy	Convolutional Neural Network	State-Space Transformations of	Binary Classifier for Fault
Measurement of the Membrane	Based Sensors for Mobile	Uncertain Systems with Purely	Detection Based on KDE and
Shape Mapping of the Heart	Robot Relocalization	Real and Conjugate-Complex	PCA
Assist Pump	Sinha, Patrikar, Dhekane,	Eigenvalues Into a Cooperative	Cong, Baranowski
Sulej, Murawski	Pandey, Kothari	Form	
		Kersten, Rauh, Aschemann	
Biomechanical System for	The Effect of an Off-Centered	Numerical Test for Stability	SVM Based Bearing Fault
Measuring the Breaking Force	Orientable Wheel on Motion	Evaluation of Discrete-Time	Diagnosis in Induction Motors
of the Inguinal Hernia Mesh	Characteristics of a Mobile	Systems	Using Frequency Spectrum
After Lichtenstein Tension-Free	Robot	Grzymkowski, Stefański	Features of Stator Current
Repair	Beniak, Pyka		Andrijauskas, Adaskevicius
Grzeszewski, Kamiński,			
Okulik, Pietrusewicz,			
Szydłowski, Waszczuk			
Measurement Uncertainty	Coordination of Concurrent	When Is Naive Low-Pass	
Evaluation of Results Provided	Mobile Robot Motion	Filtering of Noisy	
by Transducers Working in	Processes with Composite	Measurements	
Control Loops	Automaton Supervisor	Counter-Productive for the	
Wiora, Wiora	Roszkowska, Dulewicz,	Dynamics of Controlled	
	Janiec	Systems?	
		Rauh, Romig, Aschemann	

Thursday, 10:40 - 12:00

Casino	Kalman	Lehar	Strauss
D3L-A , page 93	D3L-B , page 95	D3L-C , page 97	D3L-D , page 99
Realization of Anchors	Theoretical and Algorithmic	An Enumerative Algorithm for	The Use of an Autoencoder in
Selflocalization During	Aspects of Generating	a Two-Machine Preemptive Job	the Problem of Shepherding
Preparation Stage of the	Pre-Control Form of the	Scheduling with a Learning	Kowalczuk, Jędruch,
Radiolocalization System	gCBHD Formula	Effect	Szymański
Romaniuk, Gosiewski	Mielczarek, Duleba	Żurowski, Gawiejnowicz	
Observer Strategies for Virtual	Kinematic Track Modelling for	Improving the Efficiency of	On Control-Oriented Modeling
Sensing of Embroidered	Fast Multiple Body Dynamics	Scheduling Jobs Driven by a	in Heat Transfer Based on a
Metal-Polymer Heater	Simulation of Tracked Vehicle	Common Limited Energy	Projection Technique and the
Structure	Robot	Source	Method of Integrodifferential
Schimmack, Pöschke,	Morita, Hiramatsu,	Różycki, Węglarz	Relations
Schulte, Mercorelli	Niccolini, Argiolas,		Saurin, Rauh, Aschemann
	$\mathbf{Ragaglia}$		
Inference Methods for	Accelerating Newton	Cyclic Scheduling in Interlaced	Unintended Synchronisation
Detecting the Root Cause of	Algorithms of Inverse	and Non-Interlaced Mode	Between Rotational Speed and
Alarm Floods in Causal Models	Kinematics for Robot	$\mathbf{Smutnicki}$	PWM Frequency in a PM
Wunderlich, Niggemann	Manipulators		BLDC Drive Unit
	Duleba, Karcz-Duleba		Tutaj, Drabek, Dziwinski,
			Baranowski, Piatek
Optimal Selection of Input	Construction, Modelling and	Power-Aware Scheduling of	
Features and an Acompanying	Identification of an	Preemptable Independent Jobs	
Neural Network Structure for	Experimental and Educational	on a Single Processor to Meet a	
the Classification Purposes -	2DOF Manipulator for	Schedule Deadline	
Skin Lesions Case Study	Investigation of Model Based	Różycki, Waligóra	
Mikołajczyk, Grochowski,	Control Algorithms		
Kwasigroch	Arent, Prędkiewicz,		
	Panachida, Domski, Klama		